Genistein inhibits aggregation of exogenous amyloid-beta₁₋₄₀ and alleviates astrogliosis in the hippocampus of rats.

نویسندگان

  • Maryam Bagheri
  • Mehrdad Roghani
  • Mohammad-Taghi Joghataei
  • Simin Mohseni
چکیده

We addressed the question of whether injection of Amyloid beta (Aβ)(1-40) in the rat brain is associated with pathology in the hippocampus, and if genistein has any protective effect against the neuronal damage caused by Aβ(1-40). Genistein is a plant-derived compound with a structure similar to that of the female sex hormone estrogen and it was recently shown that pretreatment with a single dose of genistein ameliorated learning and memory deficits in an (Aβ)(1-40) rat model of Alzheimer's disease. Here, we report that injection of the amyloid peptide into the hippocampus of rats led to formation of Aβ(1-40) positive aggregates close to the lateral blade of the dentate gyrus (DGlb). We also observed the following in the hippocampus: extensive cell death in the DGlb (P<0.0001), CA1 (P=0.03), and CA3 (P=0.002); an increased number of iNOS-expressing cells (P=0.01) and gliosis. Genistein given to rats by gavage 1h before injection of Aβ(1-40) inhibited the formation of Aβ(1-40) positive aggregates in the brain tissue and led to increased number of nNOS(+) (P=0.0001) cells in the hippocampus compared to sham-operated genistein-treated controls. Treatment with genistein also alleviated the extensive astrogliosis that occurred in Aβ(1-40)-injected hippocampus to a level similar to that observed in sham-operated rats. We conclude that the neurons in the DGlb are most sensitive to Aβ(1-40), and a single dose of genistein can ameliorate Aβ(1-40) induced pathology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Amyloid Fibrils Formation from Hen Egg White Lysozyme by Satureia Hortensis Extract and its Effect on Learning and Spatial Memory of Rats

Background & Aims: Alzheimer's disease is a neurodegenerative disorder characterized by the abnormal aggregation of amyloid-β plaques in the brain. Although several studies have been done for finding effective medicines in the treatment of this disease, a drug that inhibits amyloid β aggregation and ameliorates the disorder has not been approved so far. One important therapeutic approach is use...

متن کامل

Research Paper: The Effect of Callistephin on Amyloid Beta-Induced Neurotoxicity in the Hippocampus of Male Rats

Introduction: Oxidative stress plays a key role in the pathophysiology of the Alzheimer's disease and it seems that antioxidants may slow the progress of the disease. The current study aimed at investigating the possible protective effects of callistephin (a natural flavonoid) against amyloid &beta; (A&beta;)-induced neurogenesis deficits in rats. Methods: Adult Wistar male rats in the current...

متن کامل

Ellagic acid attenuates enhanced acetylcholinesterase reactivity in an experimental model of Alzheimer′s disease induced by beta amyloid25-35 in the rat

Background and Objective: Alzheimer’s disease (AD) is a multifactorial disease with debilitating consequences and few therapeutic strategies exist for it. With regard to antioxidant capacity and anti-β-amyloid polymerization potential of ellagic acid, this study was conducted to evaluate the effect of this substance on enhanced acetylcholinesterase reactivity in an experimental model of Alzheim...

متن کامل

The Effect of Endurance Training on the Expression of PRDX6 and KAT2B Genes in Hippocampus of Beta Amyloid-Induced Rat Model of Alzheimer's Disease: An Experimental Study

Background and Objectives: Alzheimer's disease is the most common form of dementia. KAT2B (Lysine Acetyltransferase 2B) is a mitochondrial protein known as mitochondria clearing control organ by mitophagy. PRDX6 (Peroxiredoxin 6) is a key regulator of mitophagy and plays a critical role in maintaining mitochondrial ROS (Reactive oxygen species) homeostasis. Therefore, the purpose of this study ...

متن کامل

Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms

Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1429  شماره 

صفحات  -

تاریخ انتشار 2012